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Introduction 
In high assurance avionics systems, such as 

systems for flight guidance, air traffic control, and 
collision avoidance, compelling evidence is 
required that the system behavior satisfies certain 
critical properties. Some critical properties are 
functional properties, properties of the services that 
the system delivers.  For example, when another 
aircraft flies too close, a collision avoidance system 
must advise the pilot to move the aircraft up or 
down to avoid a collision.  Besides functional 
properties, four other classes of critical system 
properties may be identified: security, safety, real-
time, and fault-tolerance.  In most cases, an 
avionics system must satisfy properties in more 
than a single class.  For example, a collision 
avoidance system must satisfy not only functional 
properties, but real-time constraints, fault-tolerance 
properties, and safety properties.  

Researchers have proposed numerous 
approaches for specifying, constructing, and 
certifying high assurance systems.  These include 
formal specification notations, formal models, and 
rigorous verification and validation techniques.  
But, two difficult problems remain.  The first is the 
need for technology to support the application of 
these new methods to practical systems.  Without 
such technology, opportunities to transfer  basic 
research results to practice are severely limited.  
Also needed is a unified framework for building 
systems that satisfy multiple critical properties.  
This need exists because not one but several 
different approaches for developing high assurance 
systems have evolved, each with a different 
philosophy of system development and different 
techniques for specification and assurance. 

This paper describes a framework, based on 
the SCR (Software Cost Reduction) requirements 
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method, that has recently been developed for 
building high assurance systems.   The SCR 
framework includes a formal specification notation, 
a state-based formal model, and assurance methods 
useful for constructing systems that must provide 
critical services in a secure, safe, timely, and fault-
tolerant manner. To illustrate the application of 
SCR to avionics systems, this paper presents an 
SCR requirements specification of a small avionics 
system, introduced by Miller in [1], which powers 
on a device of interest when the altitude of an 
aircraft falls below a specified threshold.  To 
develop a specification for this system, we follow a 
four-step process.  This process provides a 
systematic approach to developing and organizing a 
requirements specification of a nontrivial system. 

The SCR Requirements Method 
The SCR (Software Cost Reduction) 

requirements method is a formal method based on 
tables for the specification and analysis of the 
required behavior of safety-critical software 
systems.  Originally developed in 1978 by NRL 
(Naval Research Laboratory) to document the flight 
program requirements of the Navy’s A-7 aircraft, 
SCR has also been applied by a number of 
organizations in industry (e.g., Grummann, Ontario 
Hydro, Bell Laboratories, and Lockheed) to a wide 
range of practical systems, including avionics and 
space systems.   For example, in 1994, in the largest 
application of SCR to date, Lockheed used SCR to 
specify the requirements of the C-130J flight 
control software, which contains more than 250,000 
lines of Ada code. 

To provide tool support for the SCR method, 
our group at NRL has developed an integrated suite 
of tools called the SCR* toolset [2].  The toolset 
includes a consistency checker for checking the 
specification for type errors, missing cases, and 
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Figure 1.  Relationship between the SRS, the SDS, and the SoRS 
 

unwanted nondeterminism [3]; a dependency graph 
browser for displaying the dependencies among the 
variables in the specification; and a simulator for 
symbolically executing the system based on the 
specification.  Currently, more than 100 academic, 
industrial, and government organizations in the US, 
Canada, and several other countries are 
experimenting with the SCR* toolset. 

The utility of the SCR* toolset has been 
evaluated in a number of pilot projects. In one, 
NASA researchers used the toolset’s consistency 
checker to detect several errors in the requirements 
specification of software for the International Space 
Station [4].  In a second project, engineers at 
Rockwell used the tools to expose 28 errors, many 
of them serious, in the requirements specification of 
a flight guidance system [5].  Of the detected errors, 
a third were uncovered by creating the specification 
with the toolset, a third in running the consistency 
checker, and the remaining third in executing the 
specification with the simulator. 

Process for Specifying Requirements 
Figure 1 is the basis for a four-step process for 

constructing a requirements specification.  The first 
step creates the System Requirements Specification 
(SRS), which describes the required external 
behavior of the system in terms of monitored and 
controlled quantities in the system environment. We 
refer to the behavior described by the SRS as the 
“ideal” system behavior because it omits any 
mention of I/O devices and hardware failures. The 
remaining steps refine and extend the SRS.  Step 2 
creates the System Design Specification (SDS), 
which identifies the system’s input and output 
devices (e.g., sensors and actuators).  Step 3 creates 
the Software Requirements Specification (SoRS), 
which refines the SRS by adding modules which 
use values read from input devices to calculate 
values of the monitored quantities and which use 
the computed values of controlled quantities to 
drive output devices. Step 4 extends the SRS by 
adding behavior that reports hardware malfunctions, 
e.g., sensor failures. 
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In this process, we apply the information 
hiding principle to the requirements specification so 
that parts of the specification that are unlikely to 
change together are assigned to different modules.  
In applying information hiding to the specification, 
all of the ways in which the requirements are likely 
to change are identified, and the required system 
behavior is decomposed into modules so that 
exactly one module is associated with a single 
change.  The goal is to organize the requirements 
specification so that each change requires a change 
to only a single module.  How this is achieved is 
described below. 

System Requirements Specification 
To construct an SRS with  

SCR, environmental quantities relevant to the 
system are identified, and each quantity is 
represented by a mathematical variable.  These 
quantities consist of both controlled quantities, 
environmental quantities that the system controls, 
and monitored quantities, environmental quantities 
that can influence system behavior.  In Figure 1, M 
represents the monitored quantities and C represents 
the controlled quantities. 

The desired system behavior is documented in 
the SRS by describing two relations, NAT and 
REQ, on the monitored and controlled quantities; 
these relations are part of the Parnas Four Variable 
Model [6].  The relation NAT describes the 
constraints imposed on the environmental quantities 
by physical laws and the system environment.  REQ 
describes the relation between the monitored and 
controlled quantities that the system must enforce to 
produce the required behavior.  In developing the 
SRS, we initially specify REQ in terms of the ideal 
behavior of the system; that is, we assume that the 
system can obtain perfect values of the monitored 
quantities and compute perfect values of the 
controlled quantities.  Later, for each controlled 
variable, we specify timing constraints (and 
possibly tolerances). 

System Design Specification 
The SDS identifies and documents the 

characteristics of the resources that are available to 
estimate values of the monitored quantities and to 
set values of the controlled quantities.  These values 

are usually read from or written to hardware 
devices, such as sensors and actuators.  The values 
in the system’s hardware/software interfaces are 
denoted by variables.  These variables are 
partitioned into input variables, values read by 
input devices, and output variables, values written 
to output devices.  The product of this step is a 
description of the input and output devices and of 
the relationship between the input and output 
variables and the monitored and controlled 
variables. 

Software Requirements Specification 
The SRS and the SDS are the foundation for 

the SoRS, which describes how the input variables 
are to be used to estimate values of the monitored 
variables, and how estimates of the controlled 
variables are to be used to control the output 
devices using the output variables.  Figure 1 shows 
the relationship between the SRS, the SDS, and the 
SoRS.  It also shows the decomposition of the SoRS 
into three modules: two device-dependent modules 
called the input device interface module and the 
output device interface module, and a single device-
independent module called the function driver 
module.  This organization was influenced by the 
module structure of the A-7 flight software.  In 
Figure 1, relation D_IN specifies how estimates of 
the monitored variables, represented by ˜ M , are 
computed in terms of the input variables, and 
relation D_OUT specifies how estimates of the 
controlled variables, represented by ˜ C , are used to 
compute the values of the output variables.  The 
outputs of the input device interface module, i.e., 
the estimated values of the monitored variables, 
form the inputs to the function driver module.  The 
function driver module uses these estimates to 
compute estimates of the controlled variables.  

The required behavior of the function driver 
module is already defined by the REQ relation, 
specified as part of the SRS during Step 1 of our 
process.  What remains is to document the required 
behavior of the device-dependent modules, i.e., 
D_IN and D_OUT.  To satisfy the information 
hiding principle, the input device interface module 
only uses values of input variables to estimate 
values of the monitored variables, and the output 
device interface module only uses values of 
controlled variables to compute the values of the 
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output variables.  The benefit of this approach is 
that it makes the specification easy to change.  For 
example, to replace  an input or output device  with 
a new device or to modify or add a system function, 
usually only a small part of a single module will 
change. 

In Figure 1, the relation R ˜ E Q  specifies the 
relation between estimates of the monitored 
quantities ˜ M  and estimates of the controlled 
quantities ˜ C .  In most cases, R ˜ E Q   extends REQ 
because R ˜ E Q  not only describes the ideal behavior 
captured by REQ but also describes the externally 
visible behavior that is not part of the ideal 
behavior.  Because REQ is based on perfect 
knowledge of the monitored quantities and perfect 
computations of the controlled quantities, REQ 
does not describe how the system reports hardware 
malfunctions.  In practical systems, hardware 
devices, such as sensors, will fail, and the system 
will need to provide external notification of such 
failures. R ˜ E Q   extends the required behavior 
described by REQ by describing how notification of 
hardware malfunctions is presented to system users. 

The SCR Notation 
To specify the required system behavior in a 

practical and efficient manner, the SCR method 
uses mode classes.  A mode class, whose values are 
modes, is an auxiliary variable that helps keep the 
specification concise.  Each mode defines an 
equivalence class of system states useful in 
specifying the required system behavior. In SCR 
specifications, we often use the following prefixes 
in variable names: “m” to indicate monitored 
variables, “mc” for mode classes, “c” for controlled 
variables, “i” for input variables, and “o” for output 
variables. 

Conditions and events are important constructs 
in SCR specifications. A condition is a predicate 
defined on one or more state variables (a state 
variable is a monitored or controlled variable or a 
mode class). An event occurs when a state variable 
changes value. A conditioned event has the form 
“@T(c) WHEN d” and is defined by the expression 
“NOT c AND c’ and d,” where the unprimed 
conditions c and d are evaluated in the “old” state, 
and the primed condition c’ is evaluated in the 
“new” state.  Informally, this expression denotes the 

event “predicate c becomes true in the new state 
when predicate d holds in the old state.” The 
notation “@F(c)” denotes the event @T(NOT c). 
The notation DUR(c) indicates the length of time 
that condition c has been continuously true.  

To specify the REQ, D_IN, and D_OUT 
relations, SCR specifications use a set of tables.  
Each table defines the value of a dependent variable 
(a mode class or controlled variable) as a function.  
A table may be either a condition table or an event 
table.  Typically, a condition table describes the 
value of a controlled variable as a function of a 
mode class and a condition, whereas an event table 
describes the value of a controlled variable as a 
function of a mode class and an event.  A mode 
transition table is a special case of an event table. 
Although many SCR tables use modes to define the 
value of a variable, some SCR tables omit modes. 

Specifying the ASW in SCR 
To illustrate the above process, we apply it to 

the Altitude Switch (ASW) described in [1].  The 
ASW turns on the power to a Device of Interest 
(DOI) when the aircraft descends below a threshold 
altitude of 2000 feet.  The ASW accepts an inhibit 
signal that prevents it from turning on power to the 
DOI, and a reset signal that returns the system to its 
initial state.  It receives altitude information from an 
analog altimeter and two digital altimeters.  If the 
DOI fails to turn on within two seconds, if all three 
altimeters fail for more than two seconds, or if 
system initialization fails, the ASW indicates a fault 
by turning on a fault indicator light and by failing to 
strobe a watchdog timer.  

This section demonstrates how a requirements 
specification for the ASW can be developed using 
the four-step process described above.  First, the 
ideal behavior of the ASW is described by 
specifying the monitored and controlled variables 
and the relation REQ.  The product of Step 1 is the 
SRS.  Specified in Step 2 are the input and output 
variables associated with the ASW I/O devices and 
the relationship between these variables and the 
monitored and controlled variables.  The third step 
describes the SoRS by specifying the relations 
D_IN and D_OUT, i.e., how estimates of the 
monitored variables are computed from values of 
the input variables and how the values of the 
controlled variables are written to output devices.  
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Finally, the SoRS and the SRS are extended to 
support the reporting of hardware malfunctions. 

ASW System Requirements Specification 
To specify the ideal behavior of the ASW, the 

SRS defines seven variables: five monitored 
variables, one controlled variable, and one mode 
class.  Described below are four steps we follow to 
specify the ideal behavior: 1) describe the 
controlled variables; 2) describe the monitored 
variables; 3) describe the mode classes, and 4) 
describe the required relation REQ between the 
monitored and controlled variables. 

In the ASW, the single controlled quantity is 
the signal that wakes up the DOI. This is 
represented by the controlled variable cWakeupDOI 
which has an initial value of false.  Table 1 lists the 
single ASW controlled variable, its type, initial 
value, and a brief description. 

Table 1.  Controlled Variables of the ASW 

Name Type Init. Value Description

cWakeupDOI boolean false True means power on DOI  

Described next are the environmental 
quantities that the ASW monitors to determine 
when to turn the power to the DOI on.  Table 2 lists 
five monitored variables along with their types, 
initial values, and brief descriptions.  The 
monitored variable mAltBelow represents the 
aircraft position relative to the threshold altitude 
and is true if the aircraft position is below the 
threshold and false otherwise.  (In this example, the 
threshold altitude is 2000 feet.)  The other four 
monitored variables – mDOIstatus, mInitializing, 
mInhibit, and mReset – indicate whether the DOI is 
on or off, whether the system is being initialized, 
whether turning the DOI power on has been 
inhibited, and whether a system reset has been 
initiated. 

As noted above, each mode in a mode class 
defines an equivalence class of system states.  
Modes are useful in defining the required relation 
REQ between the monitored and controlled 
variables.  In the ASW, the system is in one of three 
modes: “init” if the system is initializing, 
“awaitDOIon” if the system is waiting for the DOI 
to power on, and “standby” otherwise.   

Table 2.  Monitored Variables of the ASW 

Name Type Init. Value Description

mAltBelow boolean true below if alt. below threshold

mDOIStatus enum off on if DOI powered on; else off

mInitializing boolean true True iff system initializing

mInhibit boolean false True iff DOI power on inhibited

mReset boolean false True iff Reset button is pushed  
Table 3 contains a mode transition table which 

specifies new values for the mode class “mcStatus” 
as a function of the five monitored variables listed 
in Table 2.  The table states that the system 
transitions from “init” to “standby” when 
mInitializing becomes false and back to “init” when 
the user initiates Reset. It states further that the 
system transitions from “standby” to “awaitDOIon” 
if the aircraft altitude drops below the threshold 
altitude when the DOI is powered off and powering 
on the DOI is not inhibited.  Finally, it states that 
the system transitions from “awaitDOIon” to 
“standby” when the DOI is powered on. 

Table 3.  Mode Transition Table for mcStatus 

Old Mode Event New Mode

init @F(mInitializing) standby
standby @T(mReset) init
standby @T(mAltBelow) WHEN awaitDOIon

    NOT mInhibit AND mDOIStatus=off

awaitDOIon @T(mDOIStatus=on) standby 

awaitDOIon @T(mReset) init

Mode Class mcStatus

 
 

After the environmental variables and the 
mode class have been defined, the next step is to 
specify the required relation REQ.  To do so, we 
define the value of the controlled variable 
cWakeupDOI as a function of the mode class 
mcStatus. As shown by Table 4, the value of 
cWakeupDOI depends solely on the current mode. 

Table 4.  Condition Table for cWakeupDOI 

Mode cWakeupDOI

init, standby false
awaitDOIon true

Mode Class mcStatus

 

ASW System Design Specification 
This section describes the input and output 

variables associated with the selected ASW input 
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and output devices and the correspondence between 
these variables and the monitored and controlled 
variables specified above.  To keep the paper 
concise, these input and output variables are 
described abstractly and details of the hardware 
device interfaces are omitted (e.g., whether the 
devices are interrupt-driven or polled, details of 
their control and data registers, etc.).  However, 
these device details need to be recorded in the SDS 
eventually because the software developers need 
this information to design and write code for the 
device drivers.  

Table 5.  ASW Input and Output Variables 

Name Type Init. Val. Description

iAnaAltValue yAltVal below below if alt. below threshold

iDigAlt1Value yDigVal 0 a/c altitude measured in feet

iDigAlt2Value yDigVal 0 a/c altitude measured in feet

iAnaAltStat yAltStat valid Valid if altitude value reliable

iDigAlt1Stat yAltStat valid Valid if altitude value reliable

iDigAlt2Stat yAltStat valid Valid if altitude value reliable

iDOIStatus enum off on if DOI powered on; else off

iInhibit boolean false True iff DOI power on inhibited

iInitializing boolean true True iff system initializing

iReset boolean false True iff pilot has reset system

Time integer 0 Time in milliseconds

oDOIPower boolean false True iff DOI is to be powered on   
 

Table 5 lists the 11 input variables and one 
output variable associated with the input and output 
devices of the ASW along with their types, initial 
values, and brief descriptions.  Three altimeters, an 
analog altimeter and two digital altimeters, are used 
to estimate whether the aircraft is below the 
threshold altitude.  The value provided by the 
analog altimeter, represented as “iAnaAltValue,” 
indicates whether the aircraft is below or above the 
threshold.  In contrast, the values provided by the 
two digital altimeters, represented as 
“iDigAlt1Value” and “iDigAlt2Value,” specify the 
aircraft altitude in feet. The validity of the 
information provided by the altimeters is 
represented by the input variables “iAnaAltStat,” 
“iDigAlt1Stat,” and “iDigAlt2Stat”. The integer 
input variable “Time” specifies the system time in 
milliseconds.  The remaining input variables 
correspond to the remaining monitored variables, 
e.g., iDOIStatus corresponds to mDOIStatus, 
iInhibit corresponds to mInhibit, etc.  The output 
variable oDOIPower is true if the device is to be 
powered on and false otherwise. 

ASW Software Requirements Specification 
As described above, the SoRS is organized 

into two device-dependent modules and a single 
device-independent module.  Because the relation 
REQ in the SRS already defines the required 
behavior of the device-independent module, what 
remains is to specify the input and output device 
interface modules, i.e., D_IN and D_OUT.   

The relation D_IN specifies how the input 
variables in Table 5 are used to compute estimates 
of the monitored variables in Table 2.  (In our 
approach, estimates of the monitored and controlled 
variables are denoted as   mR˜ e set,   mIn˜ h ibit , etc.  To 
improve readability, we have omitted the tildes.)  
Estimating the values of four of the monitored 
variables – mDOIStatus, mInhibit, mReset, and 
mInitializing – from the corresponding input 
variables – iDOIStatus, iInhibit, iReset, and 
iInitializing – is straightforward.  In each case, the 
estimated value of the monitored variable is simply 
the value of the corresponding input variable, i.e., 
mReset = iReset, mInhibit = iInhibit, etc. (These 
simple functions are placeholders for more complex 
functions for computing estimates of the monitored 
variables.  Such information, e.g., how the software 
determines whether system initialization is 
complete, i.e., how and when mInitializing will be 
set to false, is unspecified in [1].) 

Estimating the value of the monitored variable 
mAltBelow relies on the first six input variables 
listed in Table 5: the three values provided by the 
altimeters and the three indicators of validity of the 
altimeter information.  If at least one of the 
altimeters indicates that the altitude is below the 
threshold and if that altimeter information is valid, 
then the ASW considers the altitude below the 
threshold, i.e., mAltBelow is true.  Otherwise, 
mAltBelow is false.  Table 6 contains a condition 
table that defines the value of mAltBelow as a 
function of the six altimeter inputs.  In Table 6, kAlt 
represents the threshold altitude 2000 feet. 

Relation D_OUT specifies how estimates of 
the values of the controlled variables are used to 
drive the output devices.  In the ASW, the single 
controlled variable cWakeupDOI provides this 
estimate.  The value of the output variable 
oDOIPower is simply a copy of the value of 
cWakeupDOI, i.e., oDOIPower = cWakeupDOI. 
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Table 6. Condition Table for mAltBelow 

Condition mAltBelow

(iAnaAltStat = valid AND true

iAnaAltValue = below) OR

(iDigAlt1Stat = valid AND
iDigAlt1Value <= kAlt) OR

(iDigAlt2Stat=valid AND
    iDigAlt2Value <= kAlt)
(iAnaAltStat = invalid OR false

iAnaAltValue = above) AND
(iDigAlt1Stat = invalid OR

iDigAlt1Value > kAlt) AND

(iDigAlt2Stat = invalid OR
    iDigAlt2Value > kAlt)  

Reporting Hardware Malfunctions 
This section adds behavior to the original SRS 

and to the SoRS to capture the reporting of 
hardware malfunctions.  Three kinds of 
malfunctions are reported: malfunctions of the 
altimeters, malfunctions indicating initialization 
failure, and malfunctions in powering up the DOI. 
All three malfunctions are detected using two time-
outs: FaultDur, which lasts 2 sec (or 2000 ms) and 
InitDur, which lasts 0.6 sec (or 600 ms).  Adding 
the new behavior requires the creation of a new 
monitored variable, a new controlled variable, and a 
new output variable, and extensions to the mode 
transition table in Table 2 and the function defining 
cWakeupDOI in Table 4.  

Table 7.  Condition Table for mAltimeterFail 

Condition mAltimeterFail

iAnaAltStat = valid OR false
  iDigAlt1Stat = valid OR

  iDigAlt2Stat = valid

iAnaAltStat = invalid AND true

  iDigAlt1Stat = invalid AND

  iDigAlt2Stat = invalid  

For each of the input variables, iAnaAltStat, 
iDigAlt1Stat, and iDigAlt2Stat, the value “invalid” 
indicates a malfunction in the corresponding 
altimeter.  We define a new monitored variable 
“mAltimeterFail” to represent the malfunction of all 
three altimeters.  Table 7 contains a condition table 
defining mAltimeterFail as a function of these three 
input variables. 

Table 8 extends the mode transition table in 
Table 3 to capture the detection of hardware 
malfunctions.  To represent these malfunctions, a 

new mode called “fault” is added to the set of 
modes in the mode class mcStatus.  Table 8 states 
that a fault is detected if the system remains in the 
initializing state for more than 0.6 sec, if the DOI 
takes more than 2 sec to power up, or if all three 
altimeters have failed for 2 sec.  The system 
recovers from malfunctions when the pilot presses 
Reset.  To mark the extensions to Table 2, we have 
shaded the four transitions in Table 8 which involve 
the mode “fault” and the added constraint for 
system transfer from “standby” to “awaitDOIon”. 

Table 8.  Extended Mode Transition Table  

Old Mode Event New Mode
init @F(mInitializing) standby

init @T(DUR(mcStatus=init) > InitDur) fault
standby @T(mReset) init
standby @T(mAlt_Below) WHEN awaitDOIon

    NOT mInhibit AND mDOIStatus=off

    AND NOT mAltimeterFail

standby @T(DUR(mAltimeterFail) > FaultDur) fault

awaitDOIon @T(mDOIStatus=on) standby 

awaitDOIon @T(mReset) init
awaitDOIon @T(DUR(mcStatus = awaitDOIon) > FaultDur) fault

  OR @T(DUR(mAltimeterFail) > FaultDur)
fault @T(mReset) init

Mode Class mcStatus

 

The extension of the ASW to report hardware 
malfunctions requires modifications to Table 4, 
which defines the value of cWakeupDOI, and the 
creation of two new variables, a new controlled 
variable to turn on a fault indicator light and a new 
output variable to strobe the watchdog timer.  Table 
9 is a trivial extension of Table 4 to cover the new 
mode “fault”.  Table 10 contains a function defining  
the value of a new controlled variable called 
cFaultIndicator  which is on if the system is in the 
mode “fault” and off otherwise.  

Table 9. New Condition Table for cWakeupDOI 

Mode of mcStatus cWakeupDOI

init, standby, fault false
awaitDOIon true  

Table 10.  Condition Table for cFaultIndicator 

Mode of mcStatus cFaultIndicator

init, standby, awaitDOIon off
fault on  
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Table 11 defines a function to strobe the 
watchdog timer when no fault has been detected. 
The first row states that oWatchDogTimer is set to 
true when it has remained false for 0.1 sec and 
cFaultIndicator is false.  The second row describes 
a similar transition setting the variable to false.  
This ensures that the system strobes the watchdog 
timer every 0.2 sec when no fault has been detected.  

Table 11.  Event Table for oWatchDogTimer 

Event oWatchDogTimer’

@T(DUR(NOT oWatchDogTimer) >= 100) true

    WHEN NOT cFaultIndicator

@T(DUR(oWatchDogTimer) >= 100) false
    WHEN NOT cFaultIndicator  

Applying the SCR Tools 
We used the SCR* toolset to develop the SCR 

specification of the required ASW behavior and to 
analyze the specification for desired properties.  
The analysis tools that we applied were the 
consistency checker and the simulator.  We 
performed the analysis in two stages.  First, we used 
the tools to analyze the SRS, i.e., the ideal system 
behavior.  Once we had confidence in the quality of 
this specification, we added the refinements and 
extensions described above -- the input and output 
variables and the extensions to the specification to 
report hardware malfunctions.   

Our analysis uncovered some minor errors, 
which we corrected with only a small investment in 
human effort and time.  Further, running the 
consistency checker and finding no problems, and 
running a series of scenarios through the simulator 
and finding that the simulated behavior matched our 
expectations, increased our confidence in the 
specification’s correctness. Moreover, our analysis 
exposed an error in the specification in [1] and 
raised important questions.  For example, what 
happens if an inhibit signal is received when the 
ASW is in mode “awaitDOIon?” Should there be 
more than a single fault indicator light, perhaps one 
for each altimeter? 

Summary  
In our view, separation of the ideal system 

behavior from the real system behavior (i.e., the 
behavior that includes data associated with I/O 

devices and hardware malfunctions) is very 
valuable in requirements specification and analysis. 
The specification of the ideal behavior of the ASW 
is very simple: it involves only seven variables and 
four tables and is presented on a single page.  In our 
view, understanding and specifying the essential 
system behavior (captured by the SRS) should 
precede the consideration of details such as the 
characteristics of input and output devices and the 
reporting of hardware malfunctions.  Adding the 
extra information to the SDS and the SoRS and 
extending the system behavior is straightforward 
once the essential behavior is understood.  

Alternative specifications of the required ASW 
behavior are presented by Miller in [1] and by 
Thompson et al. in [7].  Miller does not specify the 
ideal system behavior and hence we found his 
specification difficult to understand and to analyze. 
The specification in [7] also combines the ideal 
system behavior with the externally visible behavior 
which reports hardware malfunctions but, like our 
approach, uses refinement and extension to produce 
the complete specification.   For another example in 
which we applied our four-step process to a more 
complex system specification, see [8]. 
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